Atomistic aspects of ductile responses of cubic silicon carbide during nanometric cutting
نویسندگان
چکیده
Cubic silicon carbide (SiC) is an extremely hard and brittle material having unique blend of material properties which makes it suitable candidate for microelectromechanical systems and nanoelectromechanical systems applications. Although, SiC can be machined in ductile regime at nanoscale through single-point diamond turning process, the root cause of the ductile response of SiC has not been understood yet which impedes significant exploitation of this ceramic material. In this paper, molecular dynamics simulation has been carried out to investigate the atomistic aspects of ductile response of SiC during nanometric cutting process. Simulation results show that cubic SiC undergoes sp3-sp2 order-disorder transition resulting in the formation of SiC-graphene-like substance with a growth rate dependent on the cutting conditions. The disorder transition of SiC causes the ductile response during its nanometric cutting operations. It was further found out that the continuous abrasive action between the diamond tool and SiC causes simultaneous sp3-sp2 order-disorder transition of diamond tool which results in graphitization of diamond and consequent tool wear.
منابع مشابه
Experimental Investigation on Cutting Characteristics in Nanometric Plunge-Cutting of BK7 and Fused Silica Glasses
Ductile cutting are most widely used in fabricating high-quality optical glass components to achieve crack-free surfaces. For ultra-precision machining of brittle glass materials, critical undeformed chip thickness (CUCT) commonly plays a pivotal role in determining the transition point from ductile cutting to brittle cutting. In this research, cutting characteristics in nanometric cutting of B...
متن کاملComparison between Numerical Simulations and Experiments for Single Point Diamond Turning of Silicon Carbide
Single Point Diamond Turning (SPDT) experiments conducted on single crystal 6-H Silicon Carbide (SiC) has shown chip formation similar to that seen in the machining of metals. The ductile nature of SiC is believed to be the result of a high pressure phase transformation (HPPT), which generates a plastic zone of material that behaves in a metallic manner. This metallic behavior is the basis for ...
متن کاملMae pro O F Co Py [ 013 ] 013503 M Ae
We have demonstrated the ability to perform a ductile material removal operation, via single-point diamond turning, on single-crystal silicon carbide (6H). To our knowledge, this is the first reported work on the ductile machining of single-crystal silicon carbide (SiC). SiC experiences a ductile-to-brittle transition similar to other nominally brittle materials such as silicon, germanium, and ...
متن کاملAnisotropy of Single-Crystal Silicon in Nanometric Cutting
The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal di...
متن کاملSingle Point Diamond Turning Effects on Surface Quality and Subsurface Damage in Ceramics
Advanced ceramics, such as Silicon Carbide (SiC) and Quartz, are increasingly being used for industrial applications. These ceramics are hard, strong, inert, and light weight. This combination of properties makes them ideal candidates for tribological, semiconductor, MEMS and optoelectronic applications respectively. Manufacturing these materials without causing surface and subsurface damage is...
متن کامل